5. Let T1 and T2 be two stop times with respect to the same filtration. Prove that me (T1, T2) and T₁ +T2 are also stopping times.

Answers

Answer 1

T1 and T2 are stop times, both of these events belong to Ft, their union also belongs to Ft. Hence, we can conclude that T1 + T2 is also a stop time.

We are given two stop times T1 and T2 with respect to the same filtration.

We are to prove that the maximum and the sum of T1 and T2, i.e., max(T1, T2) and T1 + T2 are also stop times.  

Let us consider the stop time T1.

This means that the event {T1 ≤ t} belongs to the sigma-algebra Ft, for all t≥0.

Similarly, let us consider the stop time T2.

This means that the event {T2 ≤ t} belongs to the sigma-algebra Ft, for all t≥0.

We are to prove that max(T1, T2) is also a stop time.

We can do so by considering the following event:{max(T1, T2) ≤ t}.

If T1 ≤ T2, then this event reduces to {T2 ≤ t} which belongs to Ft.

Similarly, if T2 ≤ T1, then this event reduces to {T1 ≤ t} which also belongs to Ft.

Thus, we can conclude that max(T1, T2) is a stop time.

We are to prove that T1 + T2 is also a stop time.

We can do so by considering the following event:{T1 + T2 ≤ t}.

This event can be expressed as:{T1 ≤ t − T2} ∪ {T2 ≤ t − T1}.

To know more about event visit:

https://brainly.com/question/30169088

#SPJ11


Related Questions

What is the probability of getting a number greater than or equal to 5 when rolling a number cube numbered 1 to 6?

Answers

Answer:

There is a 1/3 (or 0.33%) probability of rolling a number greater than or equal to 5.

Step-by-step explanation:

First, find what numbers are greater than or equal to 5:

5 and 6

Find what options you can get on a number cube:

1, 2, 3, 4, 5, and 6

Out of the 6 possible outcomes, there are only 2 that will get a number greater than or equal to 5. Write this as a fraction:

2/6

Simplify:

1/3

what is 1/12 in simplest form

Answers

It cant be written any way else its already in its simplest form

Please please help this is overdue

Answers

Answer

only the graph is a function. I can tell by doing the vertical line test on the graph and making sure that each x value only happens once. On the table it is not a function since the x values repeat.

PARK is a parallelogram. Find the value of x.

Answers

Answer: 40

Step-by-step explanation:


[tex](2x5y6)(4x - 3y - 3) [/tex]

Answers

240x^2y-180xy^2-180xy

Knowledge and Understanding 14. Simplify (1112 - 6vw - 3wa)-(-702 + vw + 13w). 15. Which of the following is equivalent to the expression (5a + 26 - 4c)? a. 25a2 + 20ab - 40ac +482 - 16bc + 1602 b. 25a2 + 10ab - 20ac + 482 - 86C + 16c2 + c. 25a2 + 482 + 1602 d. 10a + 4b-8c 16. Expand and simplify. (b + b)(4 - 5)(25 - 8) 17. Simplify. P-2 3p + 3 X 9p +9 P + 2 3r2 - 18. Simplify. 63 62 po* + 5m3 - 15r + 12 2m2 + 2r - 40 19. Simplify. xi21 4 X + 2 3 x-1

Answers

14. (1112 - 6vw - 3wa)-(-702 + vw + 13w) = 1814 - 7vw - 3wa - 13w

15. The equivalent of the expression (5a + 26 - 4c) is 25a2 + 10ab - 20ac + 482 - 86c + 1602 + c.

16.  (b + b)(4 - 5)(25 - 8) = -34

14. Simplify (1112 - 6vw - 3wa)-(-702 + vw + 13w).

Given expression is (1112 - 6vw - 3wa)-(-702 + vw + 13w)

⇒ 1112 - 6vw - 3wa + 702 - vw - 13w

⇒ 1814 - 7vw - 3wa - 13w

15. We are to find the equivalent of the expression (5a + 26 - 4c).

a. 25a2 + 20ab - 40ac +482 - 16bc + 1602

b. 25a2 + 10ab - 20ac + 482 - 86C + 1602

c. 25a2 + 482 + 1602

d. 10a + 4b-8c5a + 26 - 4c

= 5a - 4c + 26 = 25a2 - 20ac +482 - 4c2 + 52 - 8ac

= 25a2 - 20ac + 482 - 4c2 + 10a - 8c = Option (b)

⇒ 25a2 + 10ab - 20ac + 482 - 86c + 16c2 + c.

16. Expand and simplify. (b + b)(4 - 5)(25 - 8)

Given expression is (b + b)(4 - 5)(25 - 8) = 2b(-1)(17) = -34

To learn more about simplification

https://brainly.com/question/28008382

#SPJ11

Which 3-dimensional figure is associated with the volume formula V = 1/3 π r 2 h?

A. pyramid

B. cylinder

C. sphere

D. cone

Help ASAP!

Answers

The answer to your question is D cone

Answer

c

Step-by-step explanation:

It is not d because of the way that it is formed

How many roots does the equation 3x² = 1 - 7x have and what is the nature of the roots

Answers

Answer:

Step-by-step explanation:

Rewrite this quadratic in standard form:  3x^2 + 7x - 1.

The coefficients of x are {3, 7, -1}, and so the discriminant is b^2 - 4ac, or

7^2 - 4(3)(-1), or 49 + 12, or 61.  Because the discriminant is positive, this quadratic has two real, unequal roots

hey guys could yall solve this problem for me? thanks

Answers

Answer:

Given ABCD ~ EFGH

FG = BC(EF/AB)

FG = 7(9/6)

FG = 63/6

FG = 10.5

GH = CD(EF/AB)

GH = 11(9/6)

GH = 99/6

GH = 16.5

EH = AD(EF/AB)

EH = 12(9/6)

EH = 108/6

EH = 18

What is the value of the expression below when x=10x=10?
6x-5
6x−5

Answers

Answer:

55

Step-by-step explanation:

To find this, simply plug 10 in for x.

6(10)-5

6*10=60

60-5=55

Consider the triple integral defined below: = f(x, y, z) dv 2y² 9 Find the correct order of integration and associated limits if R is the region defined by 0 ≤ ≤1-20≤x≤2- and 0 ≤ y. Remember that it is always a good idea to sketch the region of integration. You may find it helpful to sketch the slices of R in the zy-, zz- and yz-planes first. Hint: There are multiple correct ways to write dV for this integral. If you are stuck, try dV=dz dzdy s s s f(x, y, z) ddd I=

Answers

The correct order of integration and associated limits for the given triple integral I = ∫∫∫[f(x, y, z)] dx dy dz with limits: 0 ≤ x ≤ 1 - 2y, 0 ≤ y, 0 ≤ z ≤ 2y²

The correct order of integration and associated limits for the given triple integral, let's first examine the region of integration R and its slices in different planes.

Region R is defined by 0 ≤ z ≤ 2y² and 0 ≤ x ≤ 1 - 2y.

1.Slices in the zy-plane: In the zy-plane, z is restricted to 0 ≤ z ≤ 2y², and y is unrestricted. Therefore, the integral can be written as:

I = ∫∫∫ f(x, y, z) dV = ∫∫∫ f(x, y, z) dz dy dx

2.Slices in the zx-plane: In the zx-plane, z is unrestricted, and x is restricted to 0 ≤ x ≤ 1 - 2y. Therefore, the integral can be written as:

I = ∫∫∫ f(x, y, z) dV = ∫∫∫ f(x, y, z) dx dz dy

3.Slices in the yz-plane: In the yz-plane, y is unrestricted, and z is restricted to 0 ≤ z ≤ 2y². Therefore, the integral can be written as:

I = ∫∫∫ f(x, y, z) dV = ∫∫∫ f(x, y, z) dy dz dx

Considering the given hint, we can choose any of the above orders of integration as all of them are correct ways to write the integral. However, for simplicity, let's choose the order: I = ∫∫∫ f(x, y, z) dz dy dx.

Now, let's determine the limits of integration for each variable in this order:

∫∫∫ f(x, y, z) dz dy dx = ∫∫ [∫[f(x, y, z) dz] from z=0 to z=2y²] dy dx

The innermost integral with respect to z is evaluated from 0 to 2y². The next integral with respect to y is evaluated from 0 to a certain limit determined by the region R. Finally, the outermost integral with respect to x is evaluated from 0 to 1 - 2y.

Therefore, the order of integration and the associated limits for the triple integral are:

I = ∫∫∫ f(x, y, z) dz dy dx

I = ∫∫ [∫[f(x, y, z) dz] from z=0 to z=2y²] dy dx

I = ∫∫∫[f(x, y, z)] dx dy dz with limits: 0 ≤ x ≤ 1 - 2y, 0 ≤ y, 0 ≤ z ≤ 2y²

To know more about  order of integration click here :

https://brainly.com/question/30286960

#SPJ4

: Let S = {1,2,3,...,18,19). Let R be the relation on S defined by xRy means "xy is a square of an integer". For example 1R4 since (1)(4) = 4 = 22. a. Show that R is an equivalence relation (i.e. reflexive, symmetric, and transitive). b. Find the equivalence class of 1, denoted 7. c. List all equivalence classes with more than one element.

Answers

a. The relation R defined on the set S = {1, 2, 3, ..., 18, 19} is an equivalence relation. It is reflexive, symmetric, and transitive, b. The equivalence class of 1, denoted [1], consists of the perfect squares in S: {1, 4, 9, 16}, c. The equivalence classes with more than one element are [1], [2], [3], ..., [18], and [19]. Each equivalence class represents a set of numbers that are squares of integers.

a. To show that the relation R is an equivalence relation, we need to demonstrate that it is reflexive, symmetric, and transitive.

i. Reflexive: For R to be reflexive, every element in S must be related to itself. Since the square of any integer is still an integer, xRx holds for all x in S, satisfying reflexivity.

ii. Symmetric: For R to be symmetric, if xRy holds, then yRx must also hold. Since multiplication is commutative, if xy is a square of an integer, then yx is also a square of an integer. Hence, R is symmetric.

iii. Transitive: For R to be transitive, if xRy and yRz hold, then xRz must also hold. Since the product of two squares of integers is itself a square of an integer, xz is also a square of an integer. Thus, R is transitive.

b. To find the equivalence class of 1, denoted [1], we determine all elements in S that are related to 1 under R. In this case, [1] consists of the perfect squares in S: {1, 4, 9, 16}.

c. The equivalence classes with more than one element are [1], [2], [3], ..., [18], and [19]. Each equivalence class represents a set of numbers that are squares of integers. The equivalence class [1] includes all perfect squares in S, while the other equivalence classes consist of a single element, which are non-square integers.

To know more about equivalence relation, click here: brainly.com/question/30956755

#SPJ11

Can someone answer all of them? Tysm!​

Answers

In a river bank

you can put the answers from the end

1.) 1/12

2.) 2/13

3.) 8/41

4.) 1/4

5.) 11/74

6.) 2/35

7.) 15/58

8.) 5/18

9.) 1/7

10.) 1/13

Luis's car used 4/5



of a gallon to travel 29 miles. At what rate does the car use gas, in miles per gallon?

Answers

Answer:

36.25 miles per gallon

Step-by-step explanation:

4/5 = .8

29/.8 = x/1

cross-multiply:

.8x = 29

x = 36.25

what is the domain of the function

Answers

Answer:

hi sh Sheet sh I monorailg Jericho improve Odom Ybor

Prove that for any x e R, if x2 + 7x < 0, then x < 0. X E

Answers

To prove that for any real number x, if  x²+ 7x < 0, then x < 0, we can use the properties of quadratic functions and inequalities.

By analyzing the quadratic expression, we can determine the conditions under which it is negative. This analysis shows that the inequality x²+ 7x < 0 holds true when x is less than 0. Consider the quadratic expression x² + 7x. To determine when this expression is negative, we can factor it as x(x + 7). According to the zero product property, this expression is equal to zero when either x or (x + 7) is equal to zero. Thus, the two critical points are x = 0 and x = -7.

Now, let's analyze the behavior of the quadratic expression in the intervals (-∞, -7), (-7, 0), and (0, +∞). Choose a test point from each interval, such as -8, -3, and 1, respectively. Evaluating the expression x²⁺7x for these test points, we find that for -8 and -3, the expression is positive, and for 1, it is positive as well.

Learn more about quadratic expression click here:

brainly.com/question/10025464

#SPJ11

instantaneous rate of change for the function:

f(x)= 5x^lnx ; x=3
Use the formula for instantaneous rate of change, approximating the limit by using smaller and smaller values of h, to find the instantaneous rate of change for the given function at the given value. f(x) = 5x x=3 The instantaneous rate of change for the function at x=3 is (Do not round until the final answer. Then round to four decimal places as needed)

Answers

The instantaneous rate of change for the function f(x) at x = 3 is 16.9068.

To determine the instantaneous rate of change for the function;  f(x) = 5x^ln(x), where x = 3, we can use the formula for the instantaneous rate of change, approximating the limit by using smaller and smaller values of h.

The instantaneous rate of change of the function f(x) at x = 3 can be found as follows:

Let h be a small increment of x that approaches zero. Then the formula for the instantaneous rate of change is given by:

f'(3) = lim[h→0] {(5(3+h)^(ln(3+h))-5(3^(ln3)))/h}

For the above formula, we have: Let f(x) = 5x^ln(x)

Then, f'(x) = 5x^ln(x) * [(d/dx) ln(x)] + 5*ln(x)*x^(ln(x) - 1)

Now, for the given problem, we can substitute 3 for x, and solve as follows: f'(3) = 5(3^ln(3)) * [(d/dx) ln(x)] + 5*ln(3)*3^(ln(3) - 1)

f'(3) = 5(3^ln(3)) * [(1/x)] + 5*ln(3)*3^(ln(3) - 1)

f'(3) = 5(3^ln(3)) * [(1/3)] + 5*ln(3)*3^(ln(3) - 1)

f'(3) = 5(3^ln(3) / 3) + 5*ln(3)*3^(ln(3) - 1)

Then, f'(3) = 5e ln(3) + 5 ln(3) / 3= (5e ln(3) + 5 ln(3) / 3)= 16.9068 (rounded to four decimal places).

Therefore, the instantaneous rate of change for the function f(x) at x = 3 is 16.9068.

Know more about instantaneous rate here,

https://brainly.com/question/30760748

#SPJ11

solve the equation 3a - 6 = -12.

Answers

Answer:

a=-2

Step-by-step explanation:

3a−6=−12

Step 1: Add 6 to both sides.

3a−6+6=−12+6

3a=−6

Step 2: Divide both sides by 3.

3a/ 3 = −6/ 3

a=−2

It’s a=2

I looked up the answer lol

Can somebody help me!!??

Answers

Answer:

D) 8

Step-by-step explanation:

We're looking for [tex]x[/tex], which means the 7x and 5x will have the SAME x.

7(8) = 56

For the C corner, it is cornered as a 90 degree angle, so that means the (7x) + 34 degrees NEEDS to equal 90.

7(8) = 56 + 34 = 90!!

Now we have to see if 5(8) is correct

5(8) = 40 + 50 [The degree mark] = WHICH EQUALS 90 TOO..

Therefore, the answer is D) 8

CAN SOMEONE HELP PLS :D will mark brainliest ;)

Answers

Answer: the second one/ \/36/6

Step-by-step explanation:

Is this statement true or false? You calculate a finance charge by subtracting the cost of the purchase from the total payment,​

Answers

Answer:

True

Step-by-step explanation:

Brainliest?

Answer:

I Believe the answer is True

Step-by-step explanation:

just #16 and please show your work!! i will give brainliest!!

Answers

Answer:

the bottom triangle is scaled down version of above one

then

[tex] \frac{18}{6} = \frac{x}{2} [/tex]

[tex]x = 6[/tex]

and

[tex] \frac{18}{6} = \frac{y}{5} [/tex]

[tex]y = 15[/tex]

The average speed of an airplane is 550 miles per hour Create an equation to represent the distance, d, in miles, that the airplane travels after t hours at the average speed.

Answers

Answer:

Step-by-step explanation:

1

Answer:

56

Step-by-step explanation:

i just is smart

yhhhhhhhhhhh

do not send links or files!! i really need help lol

Answers

Answer:

x²+11x+30

Step-by-step explanation:

for this question, all we need to do is multiply (x+5) by (x+6)

we can use the distributive property.

(x+5)(x+6)

x² + 5x + 6x + 30

x² + 11x + 30

complete the table... plz help ​

Answers

Answer:

3=20

4=15

5=12

Step-by-step explanation:

Three companies, A, B and C, make computer hard drives. The proportion of hard drives that fail within one year is 0.001 for company 0.002 for company B and 0.005 for company C. A computer manufacturer gets 50% of their hard drives from company A, 30% from company B and 20% from company C. The computer manufacturer installs one hard drive into each computer.
(a) What is the probability that a randomly chosen computer purchased from this manufacturer will experience a hard drive failure within one year? [4 marks]
(b) I buy a computer that does experience a hard drive failure within one year. What is the probability that the hard drive was manufactured by company C? [4 marks]
(c) The computer manufacturer sends me a replacement computer, whose hard drive also fails within one year. What is the probability that the hard drives in the original and replacement computers were manufactured by the same company? [You may assume that the computers are produced independently.] [6 marks]
(d) A colleague of mine buys a computer that does not experience a hard drive failure within one year. Calculate the probability that this hard drive was manufactured by company C. [6 marks]

Answers

(a) The probability of a computer failure from Company A is 0.001; from Company B is 0.002; and from Company C is 0.005.

Therefore, the probability that a computer will experience a hard drive failure within one year is:(0.50 x 0.001) + (0.30 x 0.002) + (0.20 x 0.005)= 0.0012. The probability of a randomly selected computer experiencing a hard drive failure within one year is 0.0012 or 0.12%.
(b) Bayes' theorem will be used to calculate this probability:Let A be the event that the computer's hard drive was manufactured by Company C. Let B be the event that the computer experienced a hard drive failure. P(A|B) is the probability that the hard drive was manufactured by Company C given that a hard drive failure was experienced.

P(A|B) = P(B|A) P(A) / P(B) Where: P(B|A) = 0.005 (the probability of failure if the hard drive was manufactured by Company C)P(A) = 0.20 (the proportion of hard drives that the computer manufacturer gets from Company C)P(B) = (0.50 x 0.001) + (0.30 x 0.002) + (0.20 x 0.005) = 0.0012 (as in part a)

Therefore: P(A|B) = (0.005 x 0.20) / 0.0012 = 0.0833 or 8.33%.
(c)Let A be the event that both hard drives were manufactured by Company A; B be the event that both hard drives were manufactured by Company B; and C be the event that both hard drives were manufactured by Company C. Then we need to find the probability of event A or B or C, given that a hard drive failure was experienced:P(A U B U C|F) = P(F|A U B U C) P(A U B U C) / P(F)where F is the event that the hard drive in the replacement computer fails.P(F|A U B U C) = P(F) = (0.50 x 0.001) + (0.30 x 0.002) + (0.20 x 0.005) = 0.0012P(A U B U C) = (0.50)^2 + (0.30)^2 + (0.20)^2 = 0.46P(F) = P(A U B U C) P(F|A U B U C) + P(A' n B n C) P(F|A' n B n C)= 0.46 x 0.0012 + 0.04 x 0.3 = 0.000552P(A U B U C|F) = P(F|A U B U C) P(A U B U C) / P(F)= (0.0012 x 0.46) / 0.000552 = 1.00or 100%. Therefore, the probability that the original and replacement computers were produced by the same company is 100%.
(d) Bayes' theorem will be used to calculate this probability:Let A be the event that the hard drive was manufactured by Company C. Let B be the event that the computer did not experience a hard drive failure. P(A|B) is the probability that the hard drive was manufactured by Company C given that no hard drive failure was experienced.P(A|B) = P(B|A) P(A) / P(B)Where:P(B|A) = 1 - 0.005 = 0.995 (the probability that the hard drive did not fail if it was manufactured by Company C)P(A) = 0.20 (as in part b)P(B) = 1 - (0.50 x 0.001) - (0.30 x 0.002) - (0.20 x 0.005) = 0.9988

Therefore:P(A|B) = (0.995 x 0.20) / 0.9988 = 0.1989 or 19.89%. Therefore, the probability that the hard drive was manufactured by Company C given that it did not fail is 19.89%.

#SPJ11

The probability that the hard drive was manufactured by company C given that a failure was not experienced by the computer within one year is approximately 0.256.

(a)Probability that a randomly chosen computer purchased from this manufacturer will experience a hard drive failure within one year = 0.5 x 0.001 + 0.3 x 0.002 + 0.2 x 0.005 = 0.0016

(b)Let's denote the event that a computer failure is experienced within one year by F and the event that the hard drive is made by company C by C.

Then we are required to calculate P(C | F), which is the probability that the hard drive was manufactured by company C given that a failure was experienced by the computer within one year. This can be found by using the Bayes' rule as follows:

[tex]$$P(C|F) = \frac{P(F|C)P(C)}{P(F|A)P(A) + P(F|B)P(B) + P(F|C)P(C)}$$[/tex]
where P(C) = 0.2, P(A) = 0.5 and P(B) = 0.3.$$P(F|A) = 0.001, P(F|B) = 0.002, P(F|C) = 0.005$$

Thus, we have:[tex]$$P(C|F) = \frac{0.005 \times 0.2}{0.001 \times 0.5 + 0.002 \times 0.3 + 0.005 \times 0.2} \approx 0.476$$[/tex]

Therefore, the probability that the hard drive was manufactured by company C given that a failure was experienced by the computer within one year is approximately 0.476.

(c)Let's denote the event that the original hard drive is manufactured by company A, B and C by A, B, and C respectively.

Similarly, let's denote the event that the replacement hard drive is manufactured by company A, B, and C by A', B', and C' respectively.

We are required to calculate P(A = A', B = B', C = C' | F), which is the probability that the hard drives in the original and replacement computers were manufactured by the same company given that a failure was experienced by both computers within one year.

This can be found by using the Bayes' rule as follows:

[tex]$$P(A = A', B = B', C = C'|F) = \frac{P(F|A = A', B = B', C = C')P(A = A')P(B = B')P(C = C')}{P(F)}$$[/tex]

where: [tex]$$P(F) = P(F|A = A', B = B', C = C')P(A = A')P(B = B')P(C = C') + P(F|A \ne A', B \ne B', C \ne C')P(A \ne A')P(B \ne B')P(C \ne C')$$[/tex]

Here, we are assuming that the probabilities of computer failure are independent of each other and the company that manufactured the hard drives of the two computers are independent of each other. Therefore, we have:

[tex]$$P(F|A = A', B = B', C = C') = P(F|A)P(F|B)P(F|C) = 0.001 \times 0.002 \times 0.005$$[/tex]

[tex]$$P(F|A \ne A', B \ne B', C \ne C') = 0$$[/tex]

Also, we have:$$P(A = A') = P(B = B') = P(C = C') = \frac{1}{3}$$

[tex]$$P(A \ne A', B \ne B', C \ne C') = \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} = \frac{8}{27}$$[/tex]

Thus, we have:$$P(A = A', B = B', C = C'|F) = \frac{0.001 \times 0.002 \times 0.005 \times (\frac{1}{3})^3}{P(F)}$$

[tex]$$P(A \ne A', B \ne B', C \ne C'|F) = \frac{P(F) - 0.001 \times 0.002 \times 0.005 \times (\frac{1}{3})^3}{\frac{8}{27}}$$[/tex]

Now, we need to find P(F). This can be done as follows:

[tex]$$P(F) = P(F|A = A', B = B', C = C')P(A = A')P(B = B')P(C = C') + P(F|A \ne A', B \ne B', C \ne C')P(A \ne A')P(B \ne B')P(C \ne C')$$$$= 0.001 \times 0.002 \times 0.005 \times (\frac{1}{3})^3 + 0 = 4.6296 \times 10^{-8}$$Thus, we have:$$P(A = A', B = B', C = C'|F) = 0.0296$$[/tex]

[tex]$$P(A \ne A', B \ne B', C \ne C'|F) = 0.9704$$[/tex]

Therefore, the probability that the hard drives in the original and replacement computers were manufactured by the same company given that a failure was experienced by both computers within one year is 0.0296.(d)Let's denote the event that the hard drive is made by company C by C and the event that a computer failure is not experienced within one year by F'. We are required to calculate P(C | F'), which is the probability that the hard drive was manufactured by company C given that a failure was not experienced by the computer within one year. This can be found by using the Bayes' rule as follows:

[tex]$$P(C|F') = \frac{P(F'|C)P(C)}{P(F'|A)P(A) + P(F'|B)P(B) + P(F'|C)P(C)}$$[/tex]

where P(C) = 0.2, P(A) = 0.5 and P(B) = 0.3.$$P(F'|A) = 0.999, P(F'|B) = 0.998, P(F'|C) = 0.995$$

Thus, we have: [tex]$$P(C|F') = \frac{0.995 \times 0.2}{0.999 \times 0.5 + 0.998 \times 0.3 + 0.995 \times 0.2} \approx 0.256$$[/tex]

Therefore, the probability that the hard drive was manufactured by company C given that a failure was not experienced by the computer within one year is approximately 0.256.

To know more about probability, visit:

https://brainly.com/question/31828911

#SPJ11

answer the question true or false. the null distribution is the distribution of the test statistic assuming the null hypothesis is true; it is mound shaped and symmetric about the null mean .

Answers

False, the null distribution is the distribution of the test statistic assuming the null hypothesis is true; it is mound-shaped and symmetric about the null mean.

The null distribution is the distribution of the test statistic under the assumption that the null hypothesis is true. However, its shape and symmetry are not necessarily predetermined.

The null distribution can take various forms depending on the specific test and the underlying data. It may or may not be mound shaped or symmetric about the null mean. The shape and characteristics of the null distribution are determined by the specific hypothesis being tested, the sample size, and other factors.

Learn more about null distribution at

https://brainly.com/question/31692159

#SPJ4

for what positive values of k does the function y=sin(kt) satisfy the differential equation y′′ 64y=0?

Answers

The function y = sin(kt) satisfies the differential equation y'' - 64y = 0 for pospositiveypospositiveyitiveitive values of k that are multiples of 8.

To determine the values of k for which the function y = sin(kt) satisfies the given differential equation, we need to substitute y into the equation and solve for k. Let's start by finding the first and second derivatives of y with respect to t.
The first derivative of y with respect to t is y' = kcos(kt), and the second derivative is y'' = -k^2sin(kt). Substituting these derivatives into the differential equation gives us:
(-k^2sin(kt)) - 64sin(kt) = 0Simplifying the equation, we get:
sin(kt) = -64*sin(kt)/k^2
We can divide both sides of the equation by sin(kt) (assuming sin(kt) is not zero) to get:
1 = -64/k^2
Solving for k^2, we find k^2 = -64. Since k must be positive, there are no positive values of k that satisfy this equation. Therefore, there are no positive values of k for which the function y = sin(kt) satisfies the given differential equation y'' - 64y = 0.

learn more about differential equation here

https://brainly.com/question/32538700



#SPJ11

Question 8 of 9
Carlita has a swimming pool in her backyard that is rectangular with a length of 26 feet and a width of 16
feet. She wants to install a concrete walkway of width c around the pool. Surrounding the walkway, she
wants to have a wood deck that extends w feet on all sides. Find an expression for the perimeter of the wood
deck.

Answers

Then, the width of the pool covered by the concrete walkway is 16 + 2c feet (2c feet on each side), and the length of the pool covered by the concrete walkway is 26 + 2c feet (2c feet on each end).

We have given a rectangular swimming pool with a length of 26 feet and a width of 16 feet. We need to find the perimeter of the wood deck that surrounds the concrete walkway of width c around the pool and extends w feet on all sides.

Let's solve the given problem as follows:Firstly, let's calculate the dimensions of the concrete walkway. Let the width of the concrete walkway be 'c' feet.

Then, the width of the pool covered by the concrete walkway is 16 + 2c feet (2c feet on each side), and the length of the pool covered by the concrete walkway is 26 + 2c feet (2c feet on each end).

So, the dimensions of the pool and concrete walkway are (26 + 2c) ft. x (16 + 2c) ft.The dimensions of the wood deck that surrounds the concrete walkway by w feet on all sides will be (26 + 2c + 2w) ft. x (16 + 2c + 2w) ft.Now, let's write the expression for the perimeter of the wood deck.P = 2(Length + Width)P = 2[(26 + 2c + 2w) + (16 + 2c + 2w)]P = 2[42 + 4c + 4w]P = 84 + 8c + 8wThe expression for the perimeter of the wood deck is 84 + 8c + 8w. Hence, the answer is 84 + 8c + 8w.

For more such questions on pool

https://brainly.com/question/28063924

#SPJ8

Consider the following second order linear ODE y" - 5y + 6y = 0, where y' and y" are first and second order derivatives with respect to x. (a) Write this as a system of two first order ODEs and then write this system in matrix form. (b) Find the eigenvalues and eigenvectors of the system. (e) Write down the general solution to the second order ODE. (a) Using your result from part 3 (or otherwise) find the solution to the following equation. y' - 5y + y = 32

Answers

a. System in the matrix form is x' = Ax where A = [tex]\left[\begin{array}{ccc}0&1\\-5&6\end{array}\right][/tex] and x = [y, u].

b. The eigenvalues of the system are λ₁ = 5 and λ₂ = 1 and eigenvector are v₁ and v₂ = v₁, and v₁ is any non-zero value.

c. The general solution is equal to y(x) = c₁ × [tex]e^{(5x)[/tex] × [v₁] + c₂× [tex]e^{(x)[/tex]× [v₂].

a. Solution to the equation. y' - 5y + y = 32 is y(x) = c₁ × [tex]e^{(5x)[/tex] + c₂ × [tex]e^{(x)[/tex].

(a) To write the second order linear ODE as a system of two first order ODEs,

Introduce a new variable u = y'.

Then, we have,

u' = y'' - 5y + 6y

   = -5y + 6u

Now, write this as a system of two first order ODEs,

y' = u

u' = -5y + 6u

To express this system in matrix form,

Define the vector x = [y, u] and the matrix A = [tex]\left[\begin{array}{ccc}0&1\\-5&6\end{array}\right][/tex]

The system can then be written as,

x' = Ax

(b) To find the eigenvalues and eigenvectors of matrix A, solve the characteristic equation,

|A - λI| = 0

where I is the identity matrix.

Substituting the values of A, we have,

[tex]|\left[\begin{array}{ccc}0&1\\-5&6\end{array}\right][/tex] [tex]-\lambda\left[\begin{array}{ccc}1&0\\0&1\end{array}\right]|[/tex] = 0

[tex]\left[\begin{array}{ccc}-\lambda&1\\-5&6-\lambda\end{array}\right][/tex] = 0

(-λ)(6-λ) - (-5)(1) = 0

λ²- 6λ + 5 = 0

Factoring the quadratic equation, we get,

(λ - 5)(λ - 1) = 0

So the eigenvalues are λ₁ = 5 and λ₂ = 1.

To find the corresponding eigenvectors,

solve the equation (A - λI)v = 0 for each eigenvalue.

Let us start with λ = 5

(A - 5I)v = 0

[tex]|\left[\begin{array}{ccc}1&1\\-5&6\end{array}\right]|[/tex] v = 0

v₁ + v₂ = 0

-5v₁ + v₂ = 0

From the first equation, we get v₂ = -v₁.

Substituting this into the second equation, we have -5v₁ - v₁ = 0,

which simplifies to -6v₁ = 0.

This implies v₁ = 0, and consequently, v₂ = 0.

So, for λ = 5, the eigenvector is v₁ = 0 and v₂ = 0.

Now, let us find the eigenvector for λ = 1.

(A - I)v = 0

[tex]|\left[\begin{array}{ccc}-1&1\\-5&5\end{array}\right][/tex] v = 0

-v₁ + v₂ = 0

-5v₁ + 5v₂ = 0

From the first equation, we get v₂ = v₁.

Substituting this into the second equation, we have -5v₁ + 5v₁ = 0,

which simplifies to 0 = 0.

This implies that v₁ can be any non-zero value.

So, for λ = 1, the eigenvector is v₁ and v₂ = v₁, where v₁ is any non-zero value.

(e) The general solution to the second order ODE can be expressed using the eigenvalues and eigenvectors as follows,

y(x) = c₁ ×[tex]e^{(\lambda_{1} x)[/tex] × v₁ + c₂ × [tex]e^{(\lambda_{2} x)[/tex]× v₂

Plugging in the values we found earlier, the general solution becomes,

y(x) = c₁ × [tex]e^{(5x)[/tex] × [v₁] + c₂× [tex]e^{(x)[/tex]× [v₂]

where [v₁] and [v₂] are the eigenvectors corresponding to the eigenvalues λ₁ = 5 and λ₂ = 1 respectively.

(a) To find the solution to the equation y' - 5y + y = 32,

Use the general solution obtained above.

Comparing the equation with the standard form y' - 5y + 6y = 0,

The equation corresponds to the case where λ₂ = 1.

Substitute λ = 1, v₁ = 1, and v₂ = 1 into the general solution.

y(x) = c₁ × [tex]e^{(5x)[/tex] × [1] + c₂ × [tex]e^{(x)[/tex] × [1]

Simplifying this expression, we have,

y(x) = c₁ × [tex]e^{(5x)[/tex] + c₂ × [tex]e^{(x)[/tex]

Learn more about matrix here

brainly.com/question/31976942

#SPJ4

Other Questions
Which of the following is an associative reference when calling Bank of America? A friend of the decision maker Another person that you talked to at Bank of America Another bank Another company in town 3. He is interested ......... learning Romanian. Another company has been offered a four-year contract to supply the computing requirements for a local bank. Assume a 14% discount rate. The working capital will be released at the end of the contract. The cash flow information is as follows: Cost of computer equipment $250,000 Working capital required $20,000 Equipment upgrade in 2 years $90,000 Equipment salvage value in 4 years $10,000 Annual net cash inflow $120,000 What is the net present value of the contract with the local bank Rp Lily, 13, 11 in wolf years, tribrid (werewolf,vampire,witch), straight, on a full moon i tun into a wolf, my curse was triggered when I was seven because I ran into the street and caused a school bus to crash int a tree and the driver died, i am still learning spells, and only drink out of blood bags. Convince your boss to give you a raise. Think of a strong example of each rhetorical appeal that you might use in your argument. The waterd is like liquid ice. is this a metephor, slmile, or neither? Discuss Lieutenant Audie Murphys military accomplishments in World War II. Work out44.09% of 78.76cm The sequence an = 5, an+1 = an + 8, a > 1 is an example of which of the following? a. a recursively-defined geometric sequence. b. none of these. c. a variation of the recursively-defined Factorial sequence. d. a recursively-defined arithmetic sequence. e. a recursively-defined Fibonacci-like sequence. 3 Write down the gradient of each line segment. Which device converts electric energy into mechanical energy?O A. An electromagnetO B. A motorO C. A transformerO D. A generator Use the scale drawing to determine how wide the duck pond is?pls hurry 7. Your favorite TV show has a protagonist who is your age and shares the same interestsas you.In fact, the protagonist seems to get into some of the same situations as you..You really like keeping up with what's going on in the show because of that. This is anexample ofa. Who am I?b. Time and Placec. Keeping It Relevantd. Adultse. Friend Groupf. Young Loveg. Loss of Innocence In what way is the plot an important element of a short story hero2623fFOLLW ME GUYS For victoria4ny NinTendoSatori Hurry up!! consider a stead flow ideal carnot cycle using steam as the working fluid in which the high temperature constant pressure heat addition process starts with a saturated liquid and ends with a saturated vapor. plot this cycle in t-s coordinates showing the steam dome. calculate the thermal efficiency for this cycle if the pressure of the high temperature steam is 6 mpa and the low temperature heat rejection process occurs at 300 k. which of the elements of this scenario represent a flow from a firm to a household? this could be a flow of dollars, inputs, or outputs. check all that apply. the aspirin maria receives the $300 per week kevin earns working for pillmart pharmacy the $225 kevin spends to purchase medical services from the medical clinic cystic fibrosis is a genetic disease that leads to the production of excessive thick mucus in the respiratory tract, leading to frequent and serious respiratory infections. the defect is due to the production of a faulty membrane protein for the transport of the chloride ion. the protein is still in the membrane; it just doesn't function normally. what type of membrane protein is being affected in this case? Analog Computers needs to borrow $885,000 from the Midland Bank. The bank requires a 17% compensating balance. How much money will Analog need to borrow in order to end up with $885,000 spendable cash