Therefore, at 6 hours, the population of yeast cells is increasing at a rate of approximately 11,418.3 cells per hour.
(1)To write an expression for the number of yeast cells after t hours, we can use the information that the population is proportional to its size. Let's denote the number of yeast cells at time t as P_(t).
Given that the initial population is 4000 cells and it doubles after 2 hours, we can set up a proportion:
P_(0) = 4000 (initial population)
P_(2) = 2 × P_(0) = 2 × 4000 = 8000 (population after 2 hours)
Since the population doubles every 2 hours, the growth rate is constant. Therefore, we can express the relationship as:
P_(t) = P_(0) × 2{t/2}
So, the expression for the number of yeast cells after t hours is:
P_(t) = 4000 × 2^{t/2}
To find the number of yeast cells after 6 hours, substitute t = 6 into the expression:
P_(6) = 4000 × 2^{6/2}
P_(6) = 4000 × 2^3
P_(6) = 4000 × 8
P_(6) = 32000
So, after 6 hours, there are 32,000 yeast cells.
To find the rate at which the population of yeast cells is increasing at 6 hours, we need to find the derivative of the population function with respect to time and evaluate it at t = 6.
P_(t) = 4000 × 2^{t/2}
Taking the derivative with respect to t:
dP/dt = (4000/2) × ln(2) × 2^{t/2}
dP/dt = 2000 × ln(2) × 2^{t/2}
To find the rate of increase at t = 6:
dP/dt | t=6 = 2000 × ln(2) × 2^{6/2}
dP/dt | t=6 = 2000 × ln(2) × 2^3
dP/dt | t=6 = 2000 × ln(2)× 8
dP/dt | t=6 ≈ 11,418.3 cells per hour
Therefore, at 6 hours, the population of yeast cells is increasing at a rate of approximately 11,418.3 cells per hour.
To know more about expression:
https://brainly.com/question/15707979
#SPJ4
The degree of precision of a quadrature formula whose error term is 24 f'"'() is: 5 4 3 2
The degree of precision of the quadrature formula with an error term of 24 f‴() is 2.
To know more about the degree of precision of a quadrature formula, refer here:
The degree of precision of a quadrature formula represents the highest power of x that the formula can integrate exactly. In this case, the error term of the formula is given as 24 f‴(), where f‴() denotes the third derivative of the function f(x). The degree of precision is determined by the highest power of x that appears in the error term.
In a quadrature formula, the error term typically has the form K * h^p, where K is a constant, h is the step size, and p is the degree of precision. In this case, the error term is 24 f‴(). We can see that there is no dependence on the step size h, which implies that h^p = h^0 = 1. Therefore, the highest power of x in the error term is determined by the highest power of x that appears in f‴().
Since the error term is 24 f‴(), it indicates that the highest power of x in f‴() is 1. Thus, the degree of precision of the quadrature formula is 2, as the highest power of x in the error term is two degrees less than the highest power of x that the formula can integrate exactly.
To know more about quadrature formulas , refer here:
https://brainly.com/question/32698316#
#SPJ11
1/4x + 6 = 1/2 (x+4)
Answer:
Solution x=16
Step-by-step explanation:
In an experiment a bag contains 2 blue marbles and 5 red marbles. Two marbles are drawn from the bag.
Answer:
5
Step-by-step explanation:
2-5=5. Subscribe Single-3 FF on yt
The sample space of all possible pairs of marbles that can be drawn is:
{BB, BR, RB, RR, RR, RR}
What is sample space?It is the total number of possible outcomes from a given set.
We have,
The sample space is the set of all possible outcomes of the experiment.
In this case, we are drawing two marbles from a bag containing 2 blue and 5 red marbles, without replacement (meaning that we do not put the first marble back into the bag before drawing the second one).
The sample space consists of all possible pairs of marbles that can be drawn:
{BB, BR, RB, RR, RR, RR}
where BB means both marbles are blue, BR means the first marble is blue and the second is red, RB means the first marble is red and the second is blue, and RR means both marbles are red.
Note that there are two outcomes corresponding to drawing two red marbles because there are 5 red marbles in the bag.
Thus,
The sample space of all possible pairs of marbles that can be drawn is:
{BB, BR, RB, RR, RR, RR}
Learn more about sample space here:
https://brainly.com/question/24273864
#SPJ3
The complete question:
In an experiment, a bag contains 2 blue marbles and 5 red marbles. Two marbles are drawn from the bag.
List the sample space.
find the value of two numbers if their sum is 39 and their difference is 1
. Amy Company sold merchandise of $8,000 to Tory Turnbull with terms 2/10, n/30. Amy Company recorded this transaction using the gross method. If Tory Turnbull paid for all the merchandize within the discount period, the journal entry that Amy Company will make to record the collection of cash would include a: a. Credit to Sales Discount of $160 b. Credit to Account receivable $7,840 c. Debit to Sales Discount of $160 d. Credit to Cash of $160 Select-
The journal entry that Amy Company will make to record the collection of cash from Tory Turnbull, who paid within the discount period, would include a credit to Cash for $160. Therefore, option d is the correct answer.
This is because Tory Turnbull will pay $8,000 - $160 (2% of $8,000) to avail the discount. The Sales Discount account is not involved in the journal entry as the discount was taken by the customer, not given by Amy Company.
Therefore, the correct answer is d. Credit to Cash of $160. This entry reflects the cash received by Amy Company and the reduction in the Accounts Receivable balance for the amount paid by the customer.
To know more about credit to Cash refer here:
https://brainly.com/question/29608520
#SPJ11
Need this answer as soon as possible
Answer:
x=22
Step-by-step explanation:
Rule states diagonals = same so 6x-36 = 96 in which x=22 cause 6(22)=132
132-36 = 96
Theoretically, if a month is chosen 300 times,
how many times would you expect a month
that starts with the letter J?
Answer:
75 times.
Step-by-step explanation:
Well there are 12 months and 3 of them start with the letter J, so theoretically, 25% of the months chosen will start with the letter J because [tex]\frac{3}{12}=\frac{1}{4}[/tex], which is 25%. 25% of 300 (or [tex]\frac{300}{4}[/tex], for those who like fractions) is 75, so theoretically, we can expect a month that starts with the letter J 75 times.
Hope this helps!
P.S: Please mark me as brainliest!
please help i’ll give brainliest
Answer:
A insects and plants
Step-by-step explanation:
the decaying things are used as fertilizer for plants to grow and insects to eat
For n e N let an be the number of strings of 0's and l's such that every 0 is followed by a 1. (a) Write down the values for a¡ through as (you may need to use some scratch paper) i. ai = ii. 02 = iii. a3 = iv. 04 = V. a5 = (b) Do these numbers look familiar? Make a conjecture. (C) How might you build the set of these strings of length n from the sets of strings of length n - 1 and strings of length n - 2? (d) Prove your conjecture.
For n e N let an be the number of strings of 0's and l's,
(a) i. a₁ = 2, ii. a₂ = 1, iii. a₃ = 2, iv. a₄ = 3, v. a₅ = 5.
(b) The values of aₙ represent the nth term in the Fibonacci sequence.
(c) The set of strings of length n can be built by appending "1" or "01" to strings of length n-1 and n-2.
(d) The conjecture that the values of aₙ represent the nth term in the Fibonacci sequence is proven using mathematical induction.
(a) To find the values of aₙ, we'll calculate them one by one:
i. a₁: We have two possible strings of length 1 that satisfy the condition: "1" and "0". So a₁ = 2.
ii. a₂: For a string of length 2, the only valid option is "10". So a₂ = 1.
iii. a₃: Now, let's consider strings of length 3. We can build them by appending either "1" or "01" to valid strings of length 2. From the previous step, we know that a₂ = 1. Thus, we have two options: "101" and "100". So a₃ = 2.
iv. a₄: Similarly, for strings of length 4, we can append either "1" or "01" to valid strings of length 3. From the previous step, we know that a₃ = 2. Thus, we have three options: "1010", "1001", and "1000". So a₄ = 3.
v. a₅: Continuing the same pattern, we can append either "1" or "01" to valid strings of length 4. From the previous step, we know that a₄ = 3. Thus, we have five options: "10101", "10100", "10010", "10001", and "10000". So a₅ = 5.
(b) If we look closely at the values of aₙ that we calculated, we notice that they form the Fibonacci sequence: 2, 1, 2, 3, 5, ...
Conjecture: The values of aₙ represent the nth term in the Fibonacci sequence.
(c) To build the set of strings of length n from the sets of strings of length n-1 and n-2, we can append either "1" or "01" to the strings of length n-1 and n-2.
For example, to obtain a string of length 4, we can append "1" or "01" to the strings of length 3. Similarly, to obtain a string of length 5, we can append "1" or "01" to the strings of length 4.
(d) To prove our conjecture that the values of aₙ represent the nth term in the Fibonacci sequence, we can use mathematical induction. We would need to show that a₁ = F₁, a₂ = F₂, and assume that aₖ = Fₖ and aₖ₋₁ = Fₖ₋₁ hold for some k ≥ 2 and prove that aₖ₊₁ = Fₖ₊₁.
Since a₁ = 2 = F₁ and a₂ = 1 = F₂, the base cases hold.
Next, assume that aₖ = Fₖ and aₖ₋₁ = Fₖ₋₁ hold for some k ≥ 2.
From the construction in part (c), we know that to obtain a string of length k+1, we append "1" to a string of length k and append "01" to a string of length k-1.
So, aₖ₊₁ = aₖ + aₖ₋₁ = Fₖ + Fₖ₋₁.
Using the property of the Fibonacci sequence that Fₖ + Fₖ₋₁ = Fₖ₊₁, we can conclude that aₖ₊₁ = Fₖ₊₁.
Learn more about the Fibonacci sequence at
https://brainly.com/question/29764204
#SPJ4
solving for x, please help
Answer:
x = 5,-2
Step-by-step explanation:
Multiply the whole equation by 3(x+1) to get rid of the denominator.
[tex] \large{ \frac{x + 2}{3} \times 3(x + 1) = \frac{2(x + 2)}{x + 1} \times 3(x + 1)} \\ \large{(x + 2)(x + 1) = 2(x + 2) \times 3} \\ \large{ {x}^{2} + 3x + 2 = 6(x + 2)} \\ \large{ {x}^{2} + 3x + 2 = 6x + 12}[/tex]
Then we solve the equation.
[tex] \large{ {x}^{2} + 3x + 2 - 6x - 12 = 0} \\ \large{ {x}^{2} - 3x - 10 = 0} \\ \large{(x - 5)(x + 2) = 0} \\ \large{x = 5, - 2}[/tex]
Since we are also solving rational equation, make sure that x ≠ -1 for this problem. Because if x = -1, the denominator is 0 which is undefined. Since our solutions are x = 5,-2 and not -1. Therefore the answer is x = 5,-2
calculate the velocity of a stream if a drop of food coloring is timed traveling 32 feet in 15 seconds.
The velocity of the stream is approximately 2.13 feet per second.
To calculate the velocity of the stream, we can use the formula:
Velocity = Distance / Time
Given that the drop of food coloring travels 32 feet in 15 seconds, we can plug in these values into the formula:
Velocity = 32 feet / 15 seconds
To find the velocity, we divide 32 by 15:
Velocity ≈ 2.13 feet per second
For more information on velocity visit: brainly.com/question/28563207
#SPJ11
Lisa can mow the lawn in 3 hours. If Rhianna helps her with another mower, the lawn can be mowed in 2 hours. How long would it take Rhianna if she worked alone? PLEAsE HELPPPP
Answer:
5 hours or 300 mins
Step-by-step explanation:
Find the area of each rhombus. Write your answer as an integer or a simplified radical
Step-by-step explanation:
area of rhombus =1/2×d1×d2
area of rhombus =1/2×9cm×5cm
area of rhombus =22.5cm²
area of rhombus = 1/2×d1×d2
area of rhombus =1/2×8in×17in
area of rhombus= 68in²
Find the equilibrium vector for the transition matrix 0.47 0.19 0.34 0 0.45 0.55 0 0 1 The equilibrium vector is (Type an integer or decimaldor each matrix element)
The equilibrium vector for the given transition matrix is approximately (0.359, 0.359, 0.284).
To find the equilibrium vector, we need to solve the equation [tex]T * v = v[/tex], where T is the transition matrix and v is the equilibrium vector.
Let's denote the equilibrium vector as (x, y, z). Setting up the equation, we have:
[tex]0.47x + 0.19y + 0.34z = x\\0.45x + 0.55y + 0z = y\\0x + 0y + 1z = z[/tex]
Simplifying the equations, we get:
[tex]0.46x - 0.19y - 0.34z = 0\\-0.45x + 0.45y = 0\\0x + 0y + 1z = z[/tex]
From the second equation, we can see that x = y. Substituting x = y in the first equation, we have:
[tex]0.46x - 0.19x - 0.34z = 0\\0.27x - 0.34z = 0[/tex]
Simplifying further, we get:
[tex]0.27x = 0.34z\\x = (0.34/0.27)z\\x = 1.259z[/tex]
Since the equilibrium vector must sum to 1, we have:
[tex]x + y + z = 1\\1.259z + 1.259z + z = 1\\3.518z = 1\\z - 0.284[/tex]
Substituting the value of z back into x, we get:
[tex]x = 1.259 * 0.284=0.359[/tex]
Therefore, the equilibrium vector is approximately (0.359, 0.359, 0.284).
To learn more about the Transition matrix, visit:
https://brainly.com/question/31382944
#SPJ11
Consider the function y = 8x + 3 between the limits of x = 2 and x = 8.
a) Find the arclength L of this curve:
L: ___________ Round your answer to 3 significant figures.
b) Find the area of the surface of revolution, A, that is obtained when the curve isrotated by 2π radians about the x-axis.
Do not include the surface areas of the disks that are formed at x = 2 and x = 8.
A = ___________ Round your answer to 3 significant figures.
a) We have the function given by; y = 8x + 3We need to find the arclength of the curve between the limits of x = 2 and x = 8.The arclength L of the curve is given by; L = ∫(2,8) sqrt(1 + f'(x)²)dx Here, f(x) = 8x + 3 Differentiate f(x) with respect to x;f'(x) = 8Now, substitute f'(x) in the above equation; L = ∫(2,8) sqrt(1 + 8²)dx L = ∫(2,8) sqrt(65)dxL = sqrt(65)∫(2,8)dxL = sqrt(65) [x]₂⁸L = sqrt(65) [8 - 2]L = 6sqrt(65)Therefore, the arclength L of this curve is 6sqrt(65).
b) We are given the function y = 8x + 3We need to rotate this curve by 2π radians about the x-axis to get the required surface of revolution. The formula for the surface area of the surface of revolution generated by revolving the curve y = f(x) between x = a and x = b about the x-axis is given by;A = ∫(a,b) 2πf(x) sqrt(1 + f'(x)²)dx Here, f(x) = 8x + 3f'(x) = 8We know that the limits of integration are from x = 2 to x = 8.
Substitute the values in the above equation; A = ∫(2,8) 2π(8x + 3) sqrt(1 + 8²)dxA = 16π ∫(2,8) (8x + 3) sqrt(65)dxA = 16π [∫(2,8) (8x sqrt(65))dx + ∫(2,8) (3 sqrt(65))dx]A = 16π [2/3(8sqrt(65))² - 2/3(2sqrt(65))² + 3sqrt(65)(8 - 2)]A = 16π [2/3(8sqrt(65))² - 2/3(2sqrt(65))² + 3sqrt(65)(6)]A = 192πsqrt(65)
Therefore, the area of the surface of revolution, A that is obtained when the curve is rotated by 2π radians about the x-axis is 192πsqrt(65) square units.
Know more about arclength of the curve:
https://brainly.com/question/15502429
#SPJ11
In the diagram, mBDA = 150°. Find mBDC.
Answer:
a. 70°
Step-by-step explanation:
m∠BDC + m∠CDA = m∠BDA
-3x + 34 - 2x + 56 = 150
-5x + 90 = 150
-5x = 60
x = -12
m∠BDC = -3x + 34 = -3(-12) + 34
= 36 + 34 = 70°
Is this a Function or not a Function?
Help
Answer:
yes
Step-by-step explanation:
no
in class of 40 pupils,20% are absent one day. (a) how many pupils are absent?
Answer: 8 pupils are absent
Step-by-step explanation:
20 percent * 40 =
(20* 40)/100 =
(800)100 =
=8
Zoe works in a bakery. She uses 250 milliliters of milk to make a loaf of bread. How many liters of milk will she need to make 15 loaves of bread?
Answer: 3.75 liters
Step-by-step explanation:
Zoe uses 250 milliliters of milk to make a loaf of bread.
If she needed to make 15 loaves therefore, she would do the following:
= 250 * 15 loaves
= 3,750 milliliters of milk
Then convert the above quantity to liters.
1 Liter = 1,000 milliliters.
3,750 milliters to liters is:
= 3,750 / 1,000
= 3.75 liters
The work of a student trying to solve the equation 2(4x − 3) = 9 + 2x + 6 is shown below: Step 1: 2(4x − 3) = 9 + 2x + 6 Step 2: 8x − 3 = 15 + 2x Step 3: 8x − 2x = 15 + 3 Step 4: 6x = 18 Step 5: x = 3 In which step did the student first make an error and what is the correct step? (4 points) a Step 2: 8x − 3 = 15 + 2x b Step 2: 8x − 6 = 15 + 2x c Step 3: 8x + 2x = 15 + 2 d Step 3: 8x − 2x = 15 − 2
Answer:
Step-by-step explanation:
2(4x - 3) = 9 + 2x + 6 Combine the like terms on the right
2(4x - 3) = 2x + 15 The distributive property gets rid of the brackets
8x - 6 = 2x + 14 Add 6 to both sides
6 6
8x = 2x + 20 Subtract 2x from both sides
-2x -2x
6x = 20
Step 2 is the error. It is a very common error. You multiply 2 and - 3 together. as well as 2 and 4 together. If you are going to forget something that will be it.
How many yards are equivalent to 38 feet? Sh
Answer:
16 2/3 yards
Step-by-step explanation:
Hope this helps and have a wonderful day!!!!
A 1-g antibiotic vial states "Reconstitute with 3.4 mL of sterile water for a final volume of 4 ml. * What is the powder volume in the vial?
A. 3.4 mL
B. 0.6 mL
C. 4 mL
D. 4.6 mL
The correct answer is option B. 0.6 mL which is the powder volume in the vial.
To determine that 0.6 mL of powder volume in the vial, we need to subtract the volume of the sterile water used for reconstitution from the final volume.
The vial states that it needs to be reconstituted with 3.4 mL of sterile water for a final volume of 4 mL. This means that 3.4 mL of sterile water will be added to the vial to make a total volume of 4 mL.
To find the powder volume, we subtract the volume of the sterile water (3.4 mL) from the final volume (4 mL):
Powder volume = Final volume - Volume of sterile water
Powder volume = 4 mL - 3.4 mL
Powder volume = 0.6 mL
Therefore, the powder volume in the vial is 0.6 mL.
To know more about volume refer here:
https://brainly.com/question/28294554#
#SPJ11
Find mXY
X
23°
N
I
plz help
Answer:
arc XY = 46°
Step-by-step explanation:
The inscribed angle XZY is half the measure of its intercepted arc , then
arc XY = 2 × 23° = 46°
On a coordinate plane, a curved line with a minimum value of (1.5, negative 1) and a maximum value of (negative 1.5, 13), crosses the x-axis at (negative 3, 0), (1, 0), and (2, 0), and crosses the y-axis at (0, 6).
Which lists all of the x-intercepts of the graphed function?
(0,6)
(1,0)(2,0)
(1,0)(2,0) and (-3,0)
(1,0)(2,0)(-3,0) and (0,6)
Answer:
c
Step-by-step explanation:
Solve this please!!!!
Answer:
The volume of the rectangular prism is 336
The volume of the triangular prism is 24.875
Add them together, 360.875. You can round if you want
A random sample of 16 size A batteries for toys yield a mean of 3.29 hours with standard deviation, 1.4 hours.
(a) Find the critical value, t∗, for a 99% Confidence interval.
(b) Find the margin of error for a 99% Confidence interval.
a. Critical value, t∗, for a 99% Confidence Interval, n=16 is given by t∗=2.921.
b. The margin of error is 0.97.
a) Critical Value, t∗ for a 99% Confidence Interval: Critical value, t∗, for a 99% Confidence Interval, n=16 is given by t∗=2.921.
Note: t-table, with 15 degrees of freedom is used to determine the critical value for the given confidence interval.
b) Margin of Error for a 99% Confidence Interval:Margin of error for a 99% confidence interval, n=16 is given by E = t∗× s/√n, where s is the standard deviation.
E = 2.921 × 1.4/√16 = 0.97 (rounded off to two decimal places).
Hence, the margin of error is 0.97.
To know more about interval visit:
https://brainly.com/question/30460486
#SPJ11
Find the critical value, t∗, for a 99% Confidence interval.
The sample size is 16.The degree of freedom (df) = n - 1 = 16 - 1 = 15.
From t-table for 15 degrees of freedom (df) and 99% level of confidence (α = 0.01) (two-tail) t* = 2.947.a) t* = 2.947.
b) Find the margin of error for a 99% Confidence interval.
The margin of error (E) for a 99% confidence interval is given by:
E = t* × s / √n
Where s is the sample standard deviation.
s = 1.4 (given)E = 2.947 × 1.4 / √16E = 0.7285 or ≈ 0.73
Therefore, the margin of error for a 99% confidence interval is approximately 0.73.
To know more about Confidence interval, visit:
https://brainly.com/question/32546207
#SPJ11
In cell B23, find the required sample size to estimate the true proportion of satisfied customers within 3% margin of error, with 99% confidence. in excel??
To calculate the required sample size in Excel for estimating the true proportion of satisfied customers within a 3% margin of error with 99% confidence,
In Excel, you can use the NORM.S.INV function to find the critical value corresponding to the desired confidence level. In this case, we use 1 - (1-0.99)/2 to find the z-score for 99% confidence level.
We square this z-score and multiply it by (0.50.5)/(0.030.03), which represents the maximum variance under worst-case scenario and the desired margin of error. The CEILING function is used to round up the result to the nearest whole number since the sample size should be an integer.
you can use the formula =CEILING(MROUND((NORM.S.INV(1-(1-0.99)/2,0)^2)(0.50.5)/(0.03*0.03),1),1). The result will give you the minimum sample size needed for the desired confidence level and margin of error.
To learn more about sample size click here :
brainly.com/question/30885988
#SPJ11
Sara had 27 peaches and 11 pears left at her roadside fruit stand. She went to the orchard and picked more peaches to stock up the stand. There are now 63 peaches at the stand, how many did she pick
Answer:
36
Step-by-step explanation:
sara had 27 peaches when she left the stand. when she returns the total number of peaches is 63. So to find the answer you take 63 and subtract it by 27 to get your answer.
Find the flux of the vector field F across the surface S in the indicated direction.
F = x i + y j + z 2 k; S is portion of the cone z = 2 square root of x^2+y^2 between z = 2 and z = 4; direction is outward
The flux of the vector field F across the surface S in the indicated direction is 8π/3.
So, the flux of the given vector field F across the surface S can be calculated by the surface integral as follows:
Φ = ∫∫S F · dS = ∫∫S (xi + yj + z2k) · n(x, y, z) dS= ∫∫S (2x/z + 2y/z + z2(-1/2)) dS= ∫∫S (2x + 2y) / z dS= ∫0²∫2π 2rcosθ / z √(r² + z²) dr dθ= 8π/3.
The flux of the vector field F across the surface S in the indicated direction is 8π/3.
Given, vector field F = xi + yj + z2k,
S is the portion of the cone z = 2√(x² + y²) between z = 2 and z = 4 and the direction is outward.
The flux of the vector field F is given by the surface integral:Φ = ∫∫S F · dS .
Here, dS is the outward pointing unit normal vector of the surface S. Hence the flux Φ will be positive if F points outward, otherwise negative. The surface S can be parameterized as r(x, y, z) = xi + yj + zk, where z varies from 2 to 4 and (x² + y²) = (z²/4).
Then, the unit normal vector to the surface is given by n(x, y, z) = (2x/z)i + (2y/z)j - k/2.
Know more about vector, here:
https://brainly.com/question/24256726
#SPJ11
11 inches in miles?
24.5 km in miles?
Answer:
0.000173611 miles is 11 inches
15.22359 miles is 24.5km
Step-by-step explanation: