Need help with the answer

Need Help With The Answer

Answers

Answer 1

Answer:

volume of cylinder=pi×r²×h

volume of cylinder =3.14×(11ft)²×10ft

volume of cylinder=3799.4ft³


Related Questions

Any mind helping? 15 Points! :>

Answers

1. 63a+54b
2. 2xy+11zy

Answer:

(63a+54b) and (2xy+11yz)

Step-by-step explanation:

9*7a is 63a

9*6b is 54b

2x*y is 2xy

11z*y is 11yz

Question is in picture

Answers

a^2 + b^2 = c^2
9^2 + 12^2 = 225
square root of 225 is 15

A glass bead has the shape of a rectangular prism with a smaller rectangular prism removed. What is the volume of the glass that forms the​ bead?

Thanks in advance!

Answers

Answer:

216 cm³

Step-by-step explanation:

large prism volume = 6 x 6 x 8 = 288 cm³

small cutout volume = 3 x 3 x 8 = 72 cm³

288- 72 = 216 cm³

South Africa reported the number of people employed by sector in a given year as follows (in thousands) 6 678 in the formal business sector (excluding agriculture), 1 492 in the commercial agricultural sector, 653 in subsistence agriculture: 2 865 in the informal business sector and 914 in the domestic service sector Construct a percentage frequency distribution of employment by sector If an employed person is selected at random from the workforce, what is the likelihood that the person earns a living through agriculture?

Answers

The probability that an employed person earns a living through agriculture is ≈ 17%.

The frequency is the number of times the data appear within each category.

A percentage frequency distribution is used to summarize data and report on the proportion or percentage of observations that fall within a specified category.

It is the process of showing how often a particular value or category occurs in a set of data.

In order to create a percentage frequency distribution, we will first add all the values together:

Total number of people employed = 6,678 + 1,492 + 653 + 2,865 + 914

= 12,602

Now we can calculate the percentage of people employed in each sector:

Formal business sector =

(6,678 / 12,602) x 100% = 53.0%

Commercial agricultural sector =

(1,492 / 12,602) x 100% = 11.8%

Subsistence agricultural sector =

(653 / 12,602) x 100% = 5.2%

Informal business sector =

(2,865 / 12,602) x 100% = 22.7%

Domestic service sector =

(914 / 12,602) x 100% = 7.3%

The likelihood that an employed person earns a living through agriculture can be calculated by adding the number of people employed in the commercial agricultural sector and the number of people employed in subsistence agriculture.

This gives a total of 2,145 people employed in agriculture.

Therefore, the probability that a person earns a living through agriculture is:

Probability = (2,145 / 12,602) x 100% ≈ 17%

The probability that an employed person earns a living through agriculture is ≈ 17%.

To know more about probability, visit:

https://brainly.com/question/13604758

#SPJ11

The drama club is selling tickets to a play for $10 each. The cost to rent the theater
and costumes is $500. In addition, the printers are charging $1 per ticket to print the
tickets. How many tickets must the drama club sell to make a profit.

Answers

56

that’s the answer because -500 is your starting number, however many tickets you sell is multiplied by 10 to show your profit, however for every ticket you have to add -1 to the equation. 55 would be 550 but the negative would be 555, however with 56 you have 560 and the negative is only 556, so you have a 4 dollar profit.

I’m not the best at explaining things but I hope this helped.

Sketch the curve with the given vector equation. indicate with anarrow the direction in which t increases
r(t) = t^2i +t^4j +t^6k
I have no idea how to go about drawing the vector. I knowthat
x=t^2
y=t^4
z=t^6
and that a possible subsititution can be y=x^2and z=x^3

Answers

The vector equation r(t) = t^2i + t^4j + t^6k represents a parametric curve in three-dimensional space. To sketch the curve, we can substitute values of t and plot corresponding points in the coordinate system.

By examining the components of the vector equation, we can observe that x = t^2, y = t^4, and z = t^6. This implies that the curve lies in the x-y-z coordinate system, where the x-coordinate is determined by t^2, the y-coordinate is determined by t^4, and the z-coordinate is determined by t^6.

To start sketching, we can choose a range of values for t and substitute them into the equations. For example, for t = -1, 0, 1, we can calculate the corresponding x, y, and z values.

By plotting these points and connecting them, we can obtain an approximate shape of the curve. Additionally, we can observe that as t increases, the curve moves in the direction of increasing t, which can be indicated by an arrow along the curve.

Note that without specific values for t or a specific range, the sketch will be a general representation of the curve.

learn more about coordinate system here: brainly.com/question/4726772

#SPJ11

I and my friends can't find the answer to this and we need help pls.

Answers

The answer is A
......

Which group of numbers is listed from least to greatest?

-4, -6, -7, -8, -9
-2, 3, 5, -8, 9
7, 4, -6, -7, -9
-2, -1, 0, 4, 9

Answers

Answer:

-2, -1, 0, 4, 9

Step-by-step explanation:

Least to greatest: -2, -1, 0, 4, 9




Suppose X is a random variable with pdf "u(x + 1). Random variable Y is defind as Y=g(X). y = g(x) f(x) = {"(x+1) f (x) х X -1 1 -2 Then, (1) Fx0= (a) e 2 (b) 1+e-2 (c)e-1 (d) 1-e-1 (e) None of them

Answers

F(x<=0) = 1/2.The correct option is (b) 1+e-2.

The probability distribution function of the random variable X is given by;

`f(x) = {(x+1), for x between -1 and 1, 0 elsewhere}.

The random variable Y is defined as Y = g(X), and y = g(x).

Find the probability that F(X) is less than or equal to 0. That is; F(x <= 0).

To find this, we need to evaluate the integral of the function over the interval (-infinity, 0).

Thus, F(x<=0) = ∫[from -∞ to 0] f(x) dx.

We know that the function is zero for all values of x, except when -1 < x < 1.

Therefore, we can break up the integral into two parts. We get:

F(x<=0) = ∫[from -∞ to -1] 0 dx + ∫[from -1 to 0] f(x) dx

Thus;

F(x<=0) = ∫[from -∞ to -1] 0 dx + ∫[from -1 to 0] (x + 1) dx

F(x<=0) = 0 + [(x^2/2) + x] [from -1 to 0]F(x<=0) = (0 - [(1/2) - 1]) = (1/2)

Therefore, F(x<=0) = 1/2.The correct option is (b) 1+e-2.

learn more about probability distribution function here:

https://brainly.com/question/32099581

#SPJ11

y=-2x-10
2x+5y=6
i need it solved with the substitution method.

Answers

Point form: ( -7,4)
Equation form: x = -7, y = 4

Simplify the expression: 5(x + 2) > 50

Answers

Answer:

x >8

Step-by-step explanation:

Answer:

x > 8

Step-by-step explanation:

Solving an algebraic inequality is the same as solving an algebraic equation. One uses the technnique of inverse operations to undo every step in the expression to get the answer. The only difference is that with an inequality, one must remember to flip the inequality sign when dividing or multiplying by a negative. This rule does not apply to the given inequality.

5(x + 2) > 50

/5            /5

x + 2 > 10

  -2      -2

x > 8

Given the following data set, calculate the values for the five-number summary and fill in the table below: -7, -5, -2, 0, 4, 6, 8, 8, 10, 22, 24 Name Number Minimum First Quartile Median Third Quartile Maximum

Answers

The five-number summary for the given data set is: Minimum = -7, First Quartile = 2, Median = 6, Third Quartile = 9, Maximum = 24.

To calculate the five-number summary for the given data set, we need to arrange the data in ascending order and then determine the minimum, first quartile (Q1), median (Q2), third quartile (Q3), and maximum values.

The given data set: -7, -5, -2, 0, 4, 6, 8, 8, 10, 22, 24

Arranged in ascending order: -7, -5, -2, 0, 4, 6, 8, 8, 10, 22, 24

Now, let's calculate the values for the five-number summary:

Minimum: The smallest value in the data set is -7.

First Quartile (Q1): This represents the median of the lower half of the data set. Since we have 11 data points, Q1 is the median of the first 5 data points. Q1 = (0 + 4) / 2 = 2.

Median (Q2): The median is the middle value of the data set. Since we have an odd number of data points, the median is the 6th value, which is 6.

Third Quartile (Q3): This represents the median of the upper half of the data set. Q3 is the median of the last 5 data points. Q3 = (8 + 10) / 2 = 9.

Maximum: The largest value in the data set is 24.

learn more about Median here:

https://brainly.com/question/28060453

#SPJ4

Prove that (A intersect B) is a subset of A. Prove that A is a subset of (A union B). Suppose that A is a subset of (B union C), B is a subset of D, and C is a subset of E. Prove that A is a subset of (D union E). Prove for any natural number n and real number x that |sin(nx)| <= n |sin(x)|.

Answers

(A intersect B) is a subset of A, A is a subset of (A union B), A is a subset of (D union E), and |sin(nx)| <= n|sin(x)| for any natural number and real number x.

To prove that (A intersect B) is a subset of A, we need to show that every element in (A intersect B) is also in A. Let x be an arbitrary element in (A intersect B). This means x is in both A and B. Since x is in A, it follows that x is also in the union of A and B, which means x is in A. Therefore, (A intersect B) is a subset of A.

To prove that A is a subset of (A union B), we need to show that every element in A is also in (A union B). Let x be an arbitrary element in A. Since x is in A, it follows that x is in the union of A and B, which means x is in (A union B). Therefore, A is a subset of (A union B).

Given A is a subset of (B union C), B is a subset of D, and C is a subset of E, we want to prove that A is a subset of (D union E). Let x be an arbitrary element in A. Since A is a subset of (B union C), it means x is in (B union C). Since B is a subset of D and C is a subset of E, we can conclude that x is in (D union E). Therefore, A is a subset of (D union E).

To prove |sin(nx)| <= n |sin(x)| for any natural number n and real number x, we can use mathematical induction. For the base case, when n = 1, the inequality reduces to |sin(x)| <= |sin(x)|, which is true. Assuming the inequality holds for some positive integer k, we need to show that it holds for k+1. By using the double-angle formula for sin, we can rewrite sin((k+1)x) as 2sin(x)cos(kx) - sin(x). By the induction hypothesis, |sin(kx)| <= k|sin(x)|, and since |cos(kx)| <= 1, we have |sin((k+1)x)| = |2sin(x)cos(kx) - sin(x)| <= 2|sin(x)||cos(kx)| + |sin(x)| <= 2k|sin(x)| + |sin(x)| = (2k+1)|sin(x)| <= (k+1)|sin(x)|. Therefore, the inequality holds for all natural numbers n and real numbers x.

Know more about Induction here:

https://brainly.com/question/32376115

#SPJ11

I'M GIVING BRAINLIEST TO WHOEVER ANSWERS FIRST! GOOD LUCK!

In the following problem, define the variable and then write an expression to represent the number of students at the elementary school. Finally, find the number of students at the middle school if the elementary school has 380 students: The middle school has 24 students less than 3 times the number of students at one of the elementary schools.

Answers

Answer:

3x - 24

Step-by-step explanation:

this is probably wrong

Answer:

1116

Step-by-step explanation:

Hey!

We can use the algebraic expression, 3x - 24, to solve.

Just substitute 380 in for x.

⇒3(380) - 24

⇒1140 - 24

1116

--------------------------------------------------------------------------------------------------------------

Hope I Helped, Feel free to ask any questions to clarify :)

Have a great day!

More Love, More Peace, Less Hate.

       -Aadi x

Mrs.sorestam bought one ruler for 0.49$ one compass for 1.49$ and one mechanical pencil 0.49 at the price shown in the table for each of her 12 students

Answers

Answer:

12(x−2.57)=0.36

Step-by-step explanation:

Let x represent the initial amount of money Mrs. Sorenstam had to spend on each student.

The cost of the 3 items is:

1.49+0.59+0.49=2.57

The change left for each student will be:

x−2.57

For 12 students, the change left will be

12(x−2.57) which equals 36 cents, according to the problem

So, the equation to represent this situation will be:

12(x−2.57)=0.36

WHICH ONE SHOULD I CHOOSE

Answers

The true statements are:a. Angle R is congruent to angle R'

b. (P' * Q')/(PQ) = 4

e. (C * Q')/(CQ) = 4

To determine which statements are true about triangle PQR and its image P' * Q' * R' after dilation, let's analyze each statement:

a. Angle R is congruent to angle R': This statement is true. When a triangle is dilated, the corresponding angles remain congruent.

b. (P' * Q')/(PQ) = 4: This statement is true. The scale factor of dilation is 4, which means the corresponding side lengths are multiplied by 4. Therefore, (P' * Q')/(PQ) = 4.

c. (QR)/(Q' * R') = 4: This statement is false. The scale factor of dilation applies to individual side lengths, not ratios of side lengths. Therefore, (QR)/(Q' * R') will not necessarily be equal to 4.

d. (C * P')/(CP) = 5: This statement is false. The scale factor of dilation is 4, not 5. Therefore, (C * P')/(CP) will not be equal to 5.

e. (C * Q')/(CQ) = 4: This statement is true. The scale factor of dilation is 4, so the corresponding side lengths are multiplied by 4. Therefore, (C * Q')/(CQ) = 4.

f. (C * P')/(CP) = (C * R')/(CR): This statement is false. The dilation does not guarantee that the ratios of the distances from the center C to the vertices will be equal.

For more such questions on congruent,click on

https://brainly.com/question/29789999

#SPJ8

A jar contains 10 red​ marbles, 30 blue​ marbles, 10 green​ marbles, and 35 orange marbles. Find the probablilty of picking a marble.

Answers

Answer:

6/17

Step-by-step explanation:

The amount of blue marbles is 30, over the total number of marbles, which is 85. 30/85 simplifies to 6/17, which is the probability.

Hopefully this helps - let me know if you have any questions!

Let g be a twice-differentiable function with g'(x) > 0 andg''(x) > 0 for all real numbers x, such that
g(4) = 12 and g(5) = 18. Of the following, which is apossible value for g(6)?
a. 15
b. 18
c. 21
d. 24
e. 27

Answers

A possible value for g(6) is 27. The only option greater than 18 is:

e. 27

To determine a possible value for g(6), we can make use of the given information and the properties of the function g(x).

Since g'(x) > 0 for all real numbers x, we know that g(x) is strictly increasing. This means that as x increases, g(x) will also increase.

Furthermore, since g''(x) > 0 for all real numbers x, we know that g(x) is a concave up function. This implies that the rate at which g(x) increases is increasing as well.

Given that g(4) = 12 and g(5) = 18, we can conclude that between x = 4 and x = 5, the function g(x) increased from 12 to 18.

Considering the properties of g(x), we can deduce that g(6) must be greater than 18. Since the function is strictly increasing and concave up, the increase from g(5) to g(6) will be even greater than the increase from g(4) to g(5).

Among the given answer choices, the only option greater than 18 is:

e. 27

Therefore, a possible value for g(6) is 27.

Learn more about greater here

https://brainly.com/question/21682757

#SPJ11

Define the two sets A = {x E Zx = 5a + 2, for some integer a} and B = {y € Z | y = 10b - 3, for some integer b}. . a. Does € A? Does –8 € A? Does – 8 € B? b. Disprove that AB. C. Prove that B CA

Answers

a. € A. Yes, 27 € A. To see this, we set a = 5, so that x = 27.

Does –8 € A? No. If –8 were in A, then –8 = 5a + 2 for some integer a. But then a = (–10)/5, which is not an integer, a contradiction.

Does – 8 € B? Yes, we set b = 0, so that y = –3, which is in B.

In either case, we have expressed y as a member of A or C, which means that B CA.

b. AB. We claim that AB. To see this, we assume the contrary, namely, that there is an integer z which is in both A and B. This means that z = 5a + 2 and z = 10b – 3 for some integers a and b. Adding these two equations, we get 7 = 5a + 10b, or 1 = a + 2b. Since the left-hand side is odd, so is the right-hand side, which means that a and b have opposite parity. However, this is impossible since 1 is not odd. Therefore, the assumption that there is such a z is false, which means that AB, as desired. C. B CA. We claim that B CA. To see this, we need to show that every element of B is in A or C. Let y be an element of B, so that y = 10b – 3 for some integer b. If y is even, then we can set a = (y + 1)/5, and we have x = 5a + 2 = y/2 + 3/2. If y is odd, then we can set c = (y + 3)/7, and we have z = 7c – 4 = y/2 + 5/2.

Know more about integer here:

https://brainly.com/question/490943

#SPJ11

10 POINTS!!!!!!



please, this was due yesterday... :(


Which substances are needed for cellular respiration?


Use complete sentences to explain how the mass of hydrogen is conserved during cellular respiration.

Answers

Answer:

for the first part:

Oxygen and glucose are both reactants in the process of cellular respiration.

Step-by-step explanation:

The mass of hydrogen is conserved during cellular respiration as it follows the Law of Conservation of Matter...This shows that hydrogen has been conserved throughout the entire process as the product has the same amount of hydrogen as the reactants.

How many slices of pizza can I eat for it to be one serving is one serving is 1/4 of the pizza and the pizza itself equal 4 servings

Answers

You can get 16 slices.

Solve the LP problem using graphical method

Minimize and maximize objective function = 12x + 14y

–2x + y ≥ 6

x + y ≤ 15

x ≥ 0, y ≥ 0

Answers

The minimum value of the objective function 12x + 14y is 156 at point C(6, 9).Answer: 156.

Given:

Minimize and maximize objective function = 12x + 14y–2x + y ≥ 6x + y ≤ 15x ≥ 0, y ≥ 0.

The graphical method is a simple and easy method of solving a linear programming problem (LP).

LP issues are represented on a graphical scale using graphical method.

Let's plot the given inequalities on the graph. The graph of all inequalities must be in the first quadrant since x, y ≥ 0.Initially, let us consider x = 0 and y = 0 for (2) and (3) respectively.

(2) y ≤ 15 - x On plotting the line y = 15 - x in first quadrant, we get the following graph:

(3) x ≤ 15 - y On plotting the line x = 15 - y in first quadrant, we get the following graph:Now let's check for the first inequality, -2x + y ≥ 6.It can be written as y ≥ 2x + 6.

On plotting the line y = 2x + 6 in first quadrant, we get the following graph:The region containing common feasible points for all the three inequalities is shown in the figure below:Thus, the feasible region is OACD.The corner points of the feasible region are A(2, 13), B(3.8, 11.2), C(6, 9) and D(15, 0).

We need to determine the minimum and maximum values of the objective function 12x + 14y at each corner point as follows:At point A, 12x + 14y = 12(2) + 14(13) = 194At point B, 12x + 14y = 12(3.8) + 14(11.2) = 184.8At point C, 12x + 14y = 12(6) + 14(9) = 156At point D, 12x + 14y = 12(15) + 14(0) = 180.

To know more about function :

https://brainly.com/question/30721594

#SPJ11

To find the minimum and maximum values of the objective function 12x + 14y subject to the given constraints using graphical method.

Therefore, the minimum value of the objective function is 210 at (10.5, 3) and the maximum value of the objective function is not bounded.

We can follow these steps:

Step 1: Convert the inequality constraints into equation form by replacing the inequality signs with equality signs. So, -2x + y = 6 and

x + y = 15

Step 2: We find the values of x and y for each equation.

Step 3: Plot the two lines on the coordinate axis formed by the values obtained in Step 2.

Step 4: Determine the feasible region by identifying the portion of the plane where the solution satisfies all the constraints. In the present case, it is the region

above the line -2x + y = 6 and

below the line x + y = 15 and

to the right of the y-axis.

Step 5: Plot the objective function 12x + 14y on the same graph.

Step 6: Move the objective function line either up or down until it just touches the highest or lowest point of the feasible region. The point of contact is the solution to the linear programming problem. The graph of the feasible region and the objective function is shown below:

graph

y = 15 - x [-10, 20, -5, 25]

y = 2x + 6 [-10, 20, -5, 25]

y = -(6/7)x + 180/7 [-10, 20, -5, 25](-1/2)x+(1/14)

y = 0.5[0, 20, 0, 20](-1/2)x+(1/7)

y = 1[0, 20, 0, 20]12x + 14

y = 210[0, 20, 0, 20]

Therefore, the minimum value of the objective function is 210 at (10.5, 3) and the maximum value of the objective function is not bounded.

To know more about minimum visit

https://brainly.com/question/21426575

#SPJ11

A dice has 6 sides numbered 1 to 6. What is the odds against rolling a 2 or a 4.

A. 4:2
B. 6:2
C. 2:4
D. 2:6

Answers

I think it’s A, 4:2.

Please consider the following linear congruence, and solve for x, using the steps outlined below. 57x + 13 = 5 (mod 17) (a) (4 points) Use the Euclidean algorithm to find the correct GCD of numbers 57 and 17.

Answers

The correct GCD of 57 and 17 is 1, obtained through the Euclidean algorithm.

To find the correct GCD (Greatest Common Divisor) of 57 and 17 using the Euclidean algorithm, we follow these steps:

1.) Divide the larger number (57) by the smaller number (17) and find the remainder:

57 ÷ 17 = 3 remainder 6

2.) Replace the larger number with the smaller number and the smaller number with the remainder:

17 ÷ 6 = 2 remainder 5

3.)  Repeat step 2 until the remainder is 0:

6 ÷ 5 = 1 remainder 1

5 ÷ 1 = 5 remainder 0

4.) The GCD is the last nonzero remainder, which is 1.

Therefore, the correct GCD of 57 and 17 is 1.

To know more about "Euclidean algorithm" refer here:

brainly.com/question/13425333#

#SPJ4

I need this done, please I need to pass these six weeks! Thanks

Answers

For page 1:
4. H
5. B
6. F, G and H

Use Newton's method with the specified initial approximation X1 to find x3, the third approximation to the solution of the given equation. (Round your answer to four decimal places.) x5 = x2 + 4, X1 = 1 X3 =

Answers

The is specified initial approximation X1  x3 is equal to 5.

We absolutely need to accentuate using the recipe in order to find x3 using Newton's method:

In this particular instance, we are informed that x5 is equal to x2 minus 4 and that X1 equals 1. Because we need to find x3, let's use the given equation to find x2.

We can solve for x2 because we have x5: x2 + 4

As of now we have x2 = x5 - 4 from x2 = x5 - 4. This ought to be added to the Newton's system recipe, and afterward we can find x3:

We ought to portray our ability f(x) and its subordinate f'(x) as Xn+1 = Xn - f(Xn)/f'(Xn).

We can now calculate x3 by using X1 = 1 as our underlying estimate: X2 = X1 - f(X1)/f'(X1) = 1 - ((1)2 + 4 - 1)/(- 1) = 1 - (1 + 4 - 1)/(- 1) = 1 + 4 = 5 In this way, x3 is the same as 5.

To know more about Newton's method refer to

https://brainly.com/question/30763640

#SPJ11

complete this item. (enter letter variables in alphabetical order.) rewrite the expression so that it has no denominator.

Answers

The given expression is $\frac{6}{t}+\frac{8}{u}-\frac{9}{v}$ and we need to rewrite this expression without any denominator in it. Step-by-step explanation: We can use the concept of the Least Common Multiple (LCM) of the denominators to remove the fractions in the expression. By taking the LCM of the denominators of the given expression, we have,$LCM\text{ of }t, u, v = t \cdot u \cdot v$ Now, multiplying each term of the given expression with the LCM $t \cdot u \cdot v$, we get,$\frac{6}{t}\cdot t \cdot u \cdot v+\frac{8}{u}\cdot t \cdot u \cdot v-\frac{9}{v}\cdot t \cdot u \cdot v$$6uv + 8tv - 9tu$$\therefore \text{The given expression without any denominator is } 6uv + 8tv - 9tu.$Thus, we can rewrite the given expression $\frac{6}{t}+\frac{8}{u}-\frac{9}{v}$ without any denominator in it as $6uv + 8tv - 9tu$.

LCM (a,b) in mathematics stands for the least common multiple, or LCM, of two numbers, such as a and b. The smallest or least positive integer that is divisible by both a and b is known as the LCM. Take the positive integers 4 and 6 as an illustration.

There are four multiples: 4,8,12,16,20,24.

6, 12, 18, and 24 are multiples of 6.

12, 24, 36, 48, and so on are frequent multiples for the numbers 4 and 6. In that lot, 12 would be the least frequent number. Now let's attempt to get the LCM of 24 and 15.

LCM of 24 and 15 is equal to 222235 = 120.

Know more about LCM here:

https://brainly.com/question/24510622

#SPJ11

question 3 options: in a race, there are 20 runners. trophies for the race are awarded to the runners finishing in first and second place. in how many ways can first and second place be determined?

Answers

There are 380 ways to determine the first and second place in the race.

In a race, there are 20 runners. Trophies for the race are awarded to the runners finishing in first and second place. In how many ways can first and second place be determined?When the trophies for the race are awarded to the runners finishing in first and second place, then it means that there are only two trophies to be awarded. Now, the number of ways in which the two trophies can be awarded can be calculated by permutation, which is a way of counting the arrangements or selections of objects in which order is important.

To determine the number of ways first and second place can be determined in a race with 20 runners, we can use the concept of permutations.

The first-place finisher can be any one of the 20 runners. After the first-place finisher is determined, there are 19 remaining runners who can finish in second place. Therefore, the number of ways to determine the first and second place is given by:

Number of ways = 20 * 19 = 380

So, there are 380 ways to determine the first and second place in the race.

Learn more about permutation:https://brainly.com/question/1216161

#SPJ11

Can I get help with number 19

Answers

Answer:

D

Step-by-step explanation:

x = 2 and y = -7

Plug those values into the equation:

2(2) - (-7) = 11

If AABC is reflected across the y-axis, what are the coordinates of A'?

Answers

Answer:

(-4, -2)

Step-by-step explanation:

A is initially (-4, 2); when we reflect over the y-axis, we will change from (x, y) to (x, -y). This gives us (-4, -2).

The coordinates of A' are (-5,-3).

What are coordinates?A coordinate system in geometry is a system that uses one or more integers, or coordinates, to define the position of points or other geometric components on a manifold such as Euclidean space. The order of the coordinates matters and they are sometimes identified by their position in an ordered tuple, and other times by a letter, as in "the x-coordinate." In elementary mathematics, the coordinates are assumed to be real numbers, but they can also be complex numbers or members of a more abstract system, such as a commutative ring. The use of a coordinate system allows geometry issues to be transformed into numerical problems and vice versa; this is the foundation of analytic geometry.Solution -

If AABC is reflected across the y-axis, the coordinates of A' are (-5,-3).

The reflected graph is given below.

Therefore, the coordinates of A' are (-5,-3).

Know more about graphs here:

https://brainly.com/question/14323743

#SPJ2

Other Questions
Owner's Equity is affected by: One shape is approaching a poor from the east traveling west at 15 mph and its presently 3 miles east east of the port I second ship is already left the poor traveling to the north at 10 mph and is presently 4 miles north of the port at this instant what is the rate of change of distance between the two ships are they going to close your more for their apart giving brainliest!!pls answer correctly Let f : R R be a function. Define a sequence fn : R R by 1 fn(x) = f ( x + = = ( + / ). n (a) Prove that if f is uniformly continuous, then fn f uniformly. (b) Prove that uniform continuity of f is a necessary assumption to conclude that fn uniformly. That is, give an example of a function : R R such that f is continuous, but that fn does not converge to f uniformly. (Time complexity, 20pt) For the following languages, sketch (high-level, no need to mention states) a 1-tape TM program that solves the problem and include a time analysis of your program showing how much time it takes, e.g. O(n),O(nlog n), O(n^2), O(n^3), etc.; n is the length of the input. a) [10pt] L = {u#v: U, v E {0,1}* and u is a substring of v} b) [CSC 389, 10pt] L = {0^2^k : for k >= 0}. E.g. 0,00,0000,00000000 L. Note that n = 2^k. which of the following was NOT an effect of Nat Turners Revolt. A. Southerners feared slave revolts would spread throughout the south. B. More northerns began to support the abolition of slavery. C. More southern began to support the ambition of slavery. D. Southerns states tightened slave laws. If the height of the box is 7 inches, what is the volume of the box? The manager for Cincinnati FoodCity is compiling the budget for store rent expense. The current level of activity is 3,000 units. The cost formula for store rent expense is $15,000 per month. What is total rent expense if the store plans an activity level of 4,000 units? blake has just arrived as a new student on campus and does not know anyone. all else being equal, is he most likely to become friends with steve who lives next door, with rob who lives two doors down, with scott who lives in the room two floors above, or with carter who lives in another dorm building on campus? Look back through the reading and find one reform that all three enlightened despots enacted. Why do you believe this reform was a universal theme among these absolute rulers? C(4,4)D(-8,0B(6, -2)A(-6, -6) what's the sum of 1,015 and 119 Which groups of numbers could 1/3 fall under. Natural,whole,integer,or rational A point P(x, y) moves along the graph of the equation y = x3 + x2 + 6. The x-values are changing at the rate of 2 units per second. How fast are the y-values changing (in units per second) at the point Q(1, 8)? Why does the Erechtheion have such a complicated floor plan? Place the following events in chronological order from earliest to latest:A. Cuban Missile Crisis, Kennedy assassinated, Great Society reformsB. Great Society reforms, Kennedy assassinated, Cuban Missile CrisisC. Cuban Missile Crisis, Great Society reforms, Kennedy assassinatedD. Kennedy assassinated, Cuban Missile Crisis, Great Society reforms 5 Facts about cell division (Computing the standard deviation for a portfolio of two riskyinvestments) Mary Guilott recently graduated from Nichols State University and is anxious to begin investing her meager savings as a way of applying what she has learned in business school.Specifically, she is evaluating an investment in a portfolio comprised of two firms' common stock. She has collected the following information about the common stock of Firm A and FirmB:Expected Return Standard DeviationFirm A's Common Stock 0.17 0.18Firm B's Common Stock 0.16 0.25Correlation Coefficient 0.50a. If Mary invests half her money in each of the two commonstocks, what is the portfolio's expected rate of return and standard deviation in portfolio return?b. Answer part a where the correlation between the two common stock investments is equal to zero.c. Answer part a where the correlation between the two common stock investments is equal to plus 1.d. Answer part a where the correlation between the two common stock investments is equal to minus 1.e. Using your responses to questions along dash d, describe the relationship between the correlation and the risk and return of the portfolio The dot plot represents the number of apples picked by a family. Explain how the outlier of the data affects the statistical summary of the data.Select the answers from the drop-down menus to complete the statements.The mean apples picked Choose... because of the outlier.The median apples picked Choose... because of the outlier.The range Choose... because of the outlier. Which word mean the same as the word listed above in the image ?